Sign in
Wordblogger | Guest Blogging Hub for Quality Content & Cross-Industry Collaboration
Wordblogger | Guest Blogging Hub for Quality Content & Cross-Industry Collaboration
Your Position: Home - Plastic Projects - Meet 5 NOAA buoys that help scientists understand our weather ...
Guest Posts

Meet 5 NOAA buoys that help scientists understand our weather ...

Jun. 23, 2025

Meet 5 NOAA buoys that help scientists understand our weather ...

Keeping track of ocean health is critical for understanding climate change, weather patterns, and the health of important fisheries. But how do NOAA and partner scientists gather data on such a vast environment? 

HUAZHONG Product Page

One big way is with buoys, ocean observing platforms that help scientists monitor the global ocean — including in remote, hard-to-reach areas. Some of these buoys float along the ocean surface, gathering data as they drift with currents (sometimes even into the paths of hurricanes!). Some, meanwhile, are moored to the ocean floor, collecting data in the same region and helping scientists observe changes over several years or decades. In honor of Ocean Month, we’re highlighting five buoys that help NOAA scientists monitor and understand the ocean (and the Great Lakes, too!).

#1: Monitoring the Bering Sea with Peggy

NOAA’s biophysical mooring site 2—nicknamed “Peggy”—is one tough buoy. Since , Peggy has been taking year-round measurements of temperature, salt content, nitrate, chlorophyll and currents in the remote Bering Sea. Data collected by Peggy has been used by scientists to study the cold pool and loss of sea ice in the Bering Sea, a region that supports large marine mammal and bird populations and some of the most profitable and sustainable commercial fisheries in the United States.

Peggy is named for Peggy Dyson, who for 25 years, from her home in Kodiak, Alaska, reported the weather, family messages, and sometimes even paid bills for the mariners of the North Pacific Ocean. 

Peggy isn’t the only moored buoy gathering key ocean data in remote environments—learn more about Arctic moorings from NOAA’s Pacific Marine Environmental Lab. 

#2: Keeping tabs on ocean acidification with the MAPCO2 buoy

The ocean absorbs about 30 percent of the carbon dioxide (CO2) that is released in the atmosphere, and as that CO2 is absorbed, it changes the pH of the ocean. Ocean acidification poses a big risk to marine life — as waters become more acidic, corals have a harder time building their skeletons, oysters and other shellfish have a harder time building their shells, and fish can experience worrisome behavioral changes.

Moored Autonomous pCO2 (MAPCO2) buoys help scientists understand ocean acidification. There are currently 50 of these buoys worldwide, each of which is deployed either over a coral reef, in the open ocean, or in a coastal region. These buoys gather long-term data on carbon dioxide in the ocean, allowing scientists to track how ocean acidification is progressing in different regions.

One of these buoys is deployed at Cheeca Rocks, a coral reef within the Florida Keys National Marine Sanctuary off of Islamorada, Florida  Scientists chose Cheeca Rocks because of its important coral habitat, which has managed to stay relatively healthy compared to reefs farther offshore. Scientists have been studying why these inshore patch reefs like Cheeca Rocks have been more resilient to environmental stressors, including coral disease, coral bleaching, and overfishing — and the MAPCO2 buoy helps in that effort. This buoy measures the partial pressure of CO2 (pCO2) in seawater, temperature, salinity, and pH every three hours. The data is open and available to the public.

#3: Understanding the Great Lakes with the ReCON buoy

Buoys aren’t just for the ocean! NOAA Great Lakes Environmental Laboratory (GLERL) deploys buoys on the Great Lakes every spring. These 16 Real-Time Coastal Observation Network (ReCON) buoys gather a range of atmospheric and water data in the Great Lakes, including wave height, dissolved oxygen, chlorophyll, and water temperature. Data collected by ReCON buoys can help water managers keep tabs on water safety, warning of potential hypoxic (low-oxygen) events, which can affect drinking water quality. The short-term weather and water data ReCON buoys gather can help the public decide whether to hit the water for a day of boating or fishing, and the long-term data helps resource managers, educators, and researchers better understand Great Lakes health. If you’re planning a day out on the Great Lakes, you can even text a buoy to get information on current wind speeds, water temperature, air temperature and more. Explore Great Lakes buoy data via the NOAA National Centers for Environmental Information data repository. 

ReCON buoys aren't the only ones that help scientists monitor water quality and predict harmful algal blooms on the Great Lakes. NOAA works with the Great Lakes Observing System (GLOS), and LimnoTech, a private engineering firm, to build monitoring capacity in central Lake Erie. One LimnoTech buoy, for instance, gathers data on oxygen levels near a water intake in Cleveland, data that’s then incorporated into NOAA models and allows scientists to alert water managers that this low-oxygen water -- which can be dangerous -- is too close to drinking water intakes.

#4: Understanding how the ocean affects monsoons with RAMA

Monsoons are seasonal shifts in wind that can cause heavy rain or droughts in regions from the tropics to the United States. A third of the world population depends on monsoon-driven rainfall for producing crops, so being able to understand and predict monsoons is critical to these populations — especially populations in India, which is primarily impacted by monsoons.

The Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) was designed to study the Indian Ocean’s role in monsoons and improve monsoon forecasts. RAMA is part of the Global Tropical Moored Buoy Array, which also includes buoy arrays in the Pacific (TAO) and Atlantic (PIRATA) Oceans. RAMA is the newest array of the three, initiated in to better study the traditionally data-sparse Indian Ocean.

RAMA has since grown through the formation of NOAA partnerships with Indonesia and India, and with contributions by Japan, China, and the Bay of Bengal Large Marine Ecosystem program. RAMA buoys collect data on a range of atmospheric and oceanic variables, including ocean temperature, salinity, currents, wind, sea level air pressure and humidity. In India's Ministry of Earth Sciences announced their Ocean Moored Buoy Network for the Northern Indian Ocean would provide open access data to the new Indian Ocean RAMA-OMNI moored buoy array - meaning even more ocean data is now shared freely among researchers, helping improve the accuracy of forecasts. 

#5: Forecasting tsunamis with the DART Buoy

DART buoys are critical tools in the effort to provide tsunami warnings to coastal communities. NOAA supports two centers — the National Tsunami Warning Center in Palmer, Alaska, and the Pacific Tsunami Warning Center in Honolulu, Hawaii—that provide forecasts and warnings of these large, dangerous waves. 

DART buoys are located strategically throughout the ocean — often close to locations where earthquakes that generate tsunamis are likely to happen - and gather key data on sea surface levels as a tsunami travels past them. After a tsunami is generated by an earthquake, a sensor located at the ocean floor communicates with the DART buoy on the surface, sending info about the magnitude of the tsunami wave directly to the Tsunami Warning Centers. The centers then create an estimate of where the tsunami was generated to produce a more accurate tsunami forecast and provide communities with the appropriate alert level (either a Watch, Advisory or Warning).

Lights, buoys – aids to navigation RYA courses. - Sailing Issues

As the scale along the top border is based on a meteorological visibility of 10 NM, the luminous ranges in the prevailing conditions obtained from the bold 10 miles curve will be identical to the nominal range started from the top border.

The diagram can also be used to obtain an approximate meteorological visibility; when, for example, a light of an intensity of 100 000 candelas is sighted at 12 NM, the current meteorological visibility will be about 5 NM.

Caution When using this diagram keep in mind that:

For more information, please visit Marine Buoys.

  • The ranges obtained are approximate.
  • The transparency of the atmosphere is not necessarily consistent between the observer and the light.
  • Glare from background lighting will reduce considerably the range at which lights are sighted. A light of 100 000 candelas has a nominal range of 20 NM; with minor background light as from a populated coastline this range will be reduced to about 14 NM, and with major background lighting as from a city or from harbour installations to about 9 NM.

Bottom border: candelas Approximate sighting ranges may be obtained by entering the diagram with the listed intensity divided by 10 for minor background lighting, and by 100 for major background lighting.

Geographic range

A light’s geographic range depends upon the heights of both the light and the observer.

The sum of the observer’s distance to the visible horizon (based on his height of eye) plus the light’s distance to the horizon (based on its elevation) is its geographic range, which is the dipping rangedipping range.

Geographic range = 2.08 × (√Elevation + √Eye height)

For this purpose the formula can be simplified, and solved without a calculator. Assume an opportune standard height of eye of 4 metres as well as rounding 2.08 down to 2.

2 × (√Elevation + 2)
Or if on a smaller yacht, with 3 metres Eye height, you can use √3 = 1.7.

Example with a light elevation of 25 metres:

2 × (5 + 2) = 14 NM
2 × (5 + 1.7) = 13.4 NM with 3 metres Eye height.

Download the geographic range table (PDF) or geographic range table (PNG) or use my online calculator.

See the geographic range table or use my online calculator.

Visible range

When comparing the geographic range with the light’s luminous range, then the lesser of the two ranges is the range at which the light will first be sighted: the visible range.

Plot a visibility arc centered on the light and with a radius equal to the visible range. Extend the vessel’s dead reckoningdead reckoning track until it intersects the visibility arc.
The bearing from the intersection point to the light is the light’s predicted bearing at first sighting.

Bobbing a light

When first sighting a light, an observer can determine if it is on the horizon by immediately reducing his height of eye. If the light disappears and then reappears when the observer returns to his original height, the light is on the horizon. This process is called “bobbing a light”.

Tide or no Tide…

There will be some judgement involved (luminous range is a rough estimate) resulting in a large margin of error in visible range. Therefore only when light elevation is rather low (<20m), while tidal range is high should it be necessary to include tide.

Loom

Because of the limiting factor of the geographic range, most major lights will never be seen from a sailing yacht 20 NM away. Yet, due to atmospheric scattering, it is sometimes possible to take a compass bearing on the loom of the light: its reflection against the clouds. Additionally, it is sometimes even possible to observe a rotating beam of light.

Colours have different ranges

Different coloured lights with equal luminous intensity have different ranges.
White light is the most visible followed by yellow, green and then red.
Therefore, at extreme ranges an “AL WG” can resemble a “Fl W”.  

Distance of minor light

The range of a lighted buoy is never indicated, but on a clear night the maximum range is 3 NM, yet often considerably less.

There are 2 visual indicators to determine your distance from a buoy: at about 0.5 NM, the light will rise up from the horizon, and at about 200m, the light will reflect in the surface.

Contact us to discuss your requirements of marine navigational aids company. Our experienced sales team can help you identify the options that best suit your needs.

Glossary

Comments

0 of 2000 characters used

All Comments (0)
Get in Touch

Copyright © 2020 Wordblogger.net

  |   Minerals & Metallurgy   |   Toys & Hobbies   |   Timepieces, Jewelry, Eyewear   |   Textiles & Leather Products   |   Telecommunications   |   Shoes & Accessories   |   Service Equipment   |   Security & Protection   |   Rubber & Plastics   |   Sitemap